
www.manaraa.com

Dyna, an Integrated Architecture
for Learning, Planning, and Reacting

Richa rd S. S u t t o n
G T E L a bo ra to r i e s I n c o r p o r a t e d

W a l t h a m , M A 02254
gu t ton~gte .com

A b s t r a c t

Dyna is an AI architecture that integrates learning,
planning, and reactive execution. Learning meth-
ods are used in Dyna both for compiling planning
results and for updat ing a model of the effects of
the agent 's actions on the world. Planning is incre-
mental and can use the probabilist ic and ofttimes
incorrect world models generated by learning pro-
cesses. Execution is fully reactive in the sense that
no planning intervenes between perception and ac-
tion. Dyna relies on machine learning methods for
learning from examples- - these are among the ba-
sic building blocks making up the archi tecture--yet
is not t ied to any part icular method. This paper
briefly introduces Dyna and discusses i ts strengths
and weaknesses with respect to other architectures.

1 I n t r o d u c t i o n t o D y n a

The Dyna architecture a t tempts to integrate

• Trial-and-error learning of an optimal reactive policy, a
mapping from situations to actions;

Learning of domain knowledge in the form of an action
model, a black box that takes as input a si tuation and
action and outputs a prediction of the immediate next
situation;

• Planning: finding the optimal reactive policy given do-
main knowledge (the action model);

• Reactive execution: No planning intervenes between
perceiving a si tuation and responding to it.

In addition, the Dyna architecture is specifically designed
for the case in which the agent does not have complete and
accurate knowledge of the effects of its actions on the world
and in which those effects may be nondeterministic.

Dyna assumes the agent 's task can be formulated as a reward
maximization problem (Figure 1). At each discrete t ime in-
terval, the agent observes a situation, takes an action based
on it, and then, after one clock tick, observes a resultant re-
ward and new situation. The agent 's objective is to choose
actions so as to max imize the total reward it receives in the
long-term. 1 This problem formulation has been used in stud-
ies of reinforcement learning for many years and is also be-
ing used in studies of planning and reactive systems (e.g.,
Russell, 1989). Although somewhat unfamiliar, the reward
maximization problem is easily mapped onto most problems
of interest.

1Most systems actually slightly discount delayed reward
relative to immediate reward.

Situation/
State L - - - - ~ J Action

Figure 1: The Problem Formulation Used in Dyna. The
agent 's object is to maximize the total reward it receives over
time. 1

REPEAT FOREVER:

1. Observe the world's s ta te and reactively choose an
action based on it;

2. Observe resultant reward and new state;

3. Apply reinforcement learning to this experience;

4. Update action model based on this experience;

5. Repeat K times:

5.1 Choose a hypothetical world state and action;
5.2 Predict resultant reward and new state using action

model;
5.3 Apply reinforcement learning to this hypothetical

experience.

Figure 2: A Generic Dyna Algori thm.

The main idea of Dyna is the old, commonsense idea that
planning is ' t rying things in your head, ' using an internal
model of the world (Craik, 1943; Dennett , 1978; Sutton &
Barto, 1981). This suggests the existence of a more primitive
process for trying things not in your head, but through direct
interaction with the world. Reinforcement learning is the
name we use for this more primitive, direct kind of trying,
and Dyna is the extension of reinforcement learning to include
a learned world model.

The essence of Dyna is given by the generic algorithm in Fig-
ure 2. In this algorithm, an "experience" is a single unit of
experience consisting of a s tar t ing state, an action, a resulting
state, and a resulting reward. The first step of the algorithm
is simply that of a reactive system; the agent reads off of
its reactive policy what to do in the current situation. The
first three steps together comprise a s tandard reinforcement
learning agent. Given enough experience, such an agent can
learn the optimal reactive mapping from situations to action.
The fourth step is the learning of domain knowledge in the
form of an action model (Lin, 1991) that can be used to pre-
dict the results of actions. The fifth step of the algorithm is
essentially reinforcement learning from hypothetical , model-
generated experiences; this is in effect a planning process.

S I G A R T Bul le t in , Vol. 2, No. 4 160

www.manaraa.com

The theory of Dyna is based on the theory of dynamic pro-
gramming (e.g., Bertsekas, 1987) and on the relationship of
dynamic programming to reinforcement learning (Watkins,
1989; Barto, Sutton & Watkins, 1990), to temporal-difference
learning (Sutton, 1988), and to AI methods for planning and
search (Korf, 1990). Werbos (1987) has previously argued
for the general idea of building AI systems that approxi-
mate dynamic programming, and Whitehead (1989) and oth-
ers have presented results for reinforcement learning systems
augmented with with an action model used for planning.
More recently, Riolo (1991) and Grefenstette et al. (1990)
have explored in different ways the use of action models to-
gether with reinforcement learning methods based on clas-
sifter systems. Mahadevan and Connell (1990) have applied
reinforcement learning methods together with ideas from sub-
sumption architectures to a real robotic box-pushing task.
Lin has explored Dyna architectures and related ideas on
both simulated (Lin, 1991) and real robot tasks (Lin, per-
sonal communication).

2 C o m p o n e n t s o f D y n a

Instantiat ing the Dyna architecture involves selecting three
major components:

• The structure of the action model and its learning algo-
rithms;

• An algorithm for selecting hypothetical states and ac-
tions (Step 5.1, search control).

• A reinforcement learning method, including a learning-
from-examples algorithm and a way of generating vari-
ety in behavior.

The structure and learning of the action model lie mostly
outside the the scope of the Dyna architecture. Recall that
the action model is meant to be simply a mimic of the world;
it takes in a description of a s tate and an action and emits
a prediction of the immediate resulting state and reward.
Actual experience with the world continually produces ex-
amples of desired behavior for such a model. These can be
used in conjunction with any of a large number of learning
algorithms for supervised learning (learning from examples).
The design of that algorithm, its knowledge representation
and generalization capabili t ies will of course have a large ef-
fect on the quality of the learned model, on how efficiently
it is learned, and on how easily it can be primed with prior
domain knowledge. Nevertheless, we consider those issues to
be outside the scope of the Dyna architecture per se. Because
Dyna makes no strong assumptions about the action model,
i t can use a wide variety of methods now existent or yet to be
developed. One assumption Dyna does make that is not true
of some supervised learning methods is that they can operate
incrementally, that is, processing examples one by one rather
than saving them up and making multiple passes.

At this t ime l i t t le can be said about how hypothetical s tart ing
states and actions should be selected. It can be done in a
large variety of ways, but there has been li t t le experience
with any but the simplest. For example, in my previous work
I have selected among previously observed states at random,
either uniformly or in proportion to their frequency of prior
occurrence. This is essentially the issue of search control--
what part of the state space shall be worked on (planned
about) next? Larger problems will of course require that
the search be controlled more carefully. For some choices of
search control method, the form of planning done in Dyna

may be essentially the same as t radi t ional kinds of planning,
but for others it is clearly different. The following section
discusses planning in Dyna further.

Among the reinforcement learning algorithms that can be
used in Steps 3 and 5.3 of the Dyna algorithm (Figure 2)
are the adaptive heuristic critic (Sutton, 1984), the bucket
brigade (Holland, 1986), and other genetic algorithm meth-
ods (e.g., Grefenstette et al., 1990). For concreteness, con-
sider the simplest, most recent, and perhaps most promising
method, Q-learning (Watkins, 1989). The basic idea in Q-
learning is to learn an evaluation function that gives the value
of performing each action in each state. This function is usu-
ally denoted Q(x, a), where x is a s ta te and a is an action
(the name "Q-learning" comes from this choice of notation).
When using Q-learning, the action chosen in a state x is usu-
ally simply the action a for which Q(z, a) is maximal.

The update algorithm for Q-learning can be expressed in a
general form as a way of moving from a unit of experience to
a training example for the evaluation function. This train-
ing example is then input to a supervised learning algorithm.
Just as in learning the action model, the choice of supervised
learning algorithm will have a strong effect on the perfor-
mance of the Dyna architecture, but is not a part of the
architecture itself. Recall that a unit of experience consists
of a start ing state (z), an action (a), a next s tate (y), and a
reward (r). From this one forms the training example:

Q(z, a) should be r+7m~xQ(y,b) ,

where % 0 < 3' < 1, is a constant that determines the relative
value of short-term versus long-term reward. Strong formal
results are available for the case in which the Q function is
implemented as a table. For that case, Watkins (1989) has
shown that Q-learning from real experiences--direct agent-
environment interaction without using an action model--wil l
converge to the optimal behavior under weak conditions.

3 P l a n n i n g a n d R e a c t i n g i n D y n a

Just as reinforcement learning with real experience (Steps 1-
3) is meant to learn the optimal way of behaving for the real
world, reinforcement learning with hypothetical experience
(Steps 5.1-5.3) is meant to learn the optimal way of behaving
given the action model. Reinforcement learning with hypo-
thetical experience is in fact an incremental form of planning
that is closely related to dynamic programming. Here we
will call i t incremental dynamic programming, after Watkins
(1989), or IDP planning for short. Assuming IDP planning
steps can be done relatively quickly and cheaply compared
to real steps (i.e., K > > 1) and that the model is correct,
IDP planning will greatly speed the finding of the optimal
policy. In small tasks this has been shown to be true even
if the model must be learned as well or if the world changes
(Sutton, 1990).

Results from dynamic programming (Bertsekas & Tsitsiklis,
1989) can be adapted to show that IDP planning based on
the tabular version of Q-learning converges onto the opti-
mal behavior given the action model. This is a strong result
because it applies to nondeterministic environments and no
mat ter how deep a search is required to find the optimal ac-
tions. Strictly, it applies only to the tabular case, but the
results should be similar for supervised learning methods to
the extent that they can accurately approximate the desired
functions.

Dyna is fully reactive in the sense that no planning intervenes
between observing a state and taking an action dependent

161 S I G A R T Bul le t in , Vol. 2, No. 4

www.manaraa.com

Situation ~ [Planner] ~ Action A)
t I

_ (Reactive B) Situation v k,~ Policy j / ~ Action

C) Situation ~/WReactive~ ~ Action

[]
Figure 3: Simplistic Comparison of Architectures: A) Con-
ventional Planning, B) Reactive Systems, C) IDP Planning
(incremental compiling into reactions).

on that state. In the Dyna algorithm given in Figure 2, IDP
planning takes place after action selection, but conceptually
these processes proceed in parallel. 2 The critical issue is that
planning and reacting processes are not strongly coupled: the
agent never delays responding to a situation in order to plan
a response to it. Although t h e agent always responds reac-
tively and instantly, this does not mean it must immediately
respond decisively; for example, it may choose the response
of sitting still. Figure 3 contrasts this approach to combining
planning and execution with that of conventional planning
systems and of reactive systems.

IDP planning has both advantages and disadvantages com-
pared to other planning methods. The primary advantage
is that it is totally incremental; any time spent planning re-
sults in an improvement in the agent's immediate reactions
or evaluation function for some state. Thus, performance
continually improves, and arbitrarily long optimal sequences
of actions can be found. In addition, it readily handles non-
deterministic tasks and is extremely general in that it makes
no assumptions about the world other than that is can be at
least partially predicted.

The primary disadvantage of IDP planning is that it may
require large amounts of memory. Whereas traditional plan-
ning methods are based on constructing search trees and
backing-up evaluations on demand, IDP planning is based on
storing backed-up evaluations (and possibly reactions) associ-
ated with each state or state-action pair. Even if supervised
learning methods are used instead of tables, this is still a
memory-intensive approach. It will require far more memory
than depth-first search, for example.

4 P o t e n t i a l P r o b l e m s w i t h D y n a

In the rest of this paper we briefly discuss a number of po-
tential problems with the Dyna architecture.

~The Dyna algorithm given in Figure 2 also sacrifices re-
activity somewhat for the sake of pedagogy. A more fully re-
active version of the algorithm would move Step 5 inbetween
Steps 1 and 2. More generally, the four main functions of the
algorithm--reacting, reinforcement learning, model learning,
and IDP planning--should be thought of as running simul-
taneously and independently.

4 .1 R e l i a n c e o n S u p e r v i s e d L e a r n i n g

On realistic problems, the state space is obviously far too
large for table-based approaches, and thus Dyna must rely on
methods for learning and generalizing from examples. How-
ever, despite enormous amounts of work in several disciplines,
fully satisfactory methods for supervised learning remain to
be found. For example, there remain difficult issues in gener-
alization and knowledge representation that must be solved.
Nevertheless, I do not feel it is inappropriate to base an in-
tegrated architecture on a capability for effectively learning
from examples. Would not any integrated architecture rely
on such 'a capability at some level? Any architecture using
analogy, compilation, reminding, or even similarity would do
so. If the answer is clearly 'yes,' then why not build this in
as a basic part of the architecture?

4 .2 H i e r a r c h i c a l P l a n n i n g

Dyna as described is a very flat system. It plans at the level of
individual actions. If those actions are muscle twitches, then
Dyna will be of no help planning a trip across the count ry- -
and neither will any other planner that operates at a single
level. Planning must be done at several levels and the results
combined in some way. We have had lots of experience doing
this with conventional planners, but it has not been tried with
Dyna. To my knowledge there is no reason as yet to think
that hierarchical planning will be either easier or harder in
Dyna than it is in conventional planners.

4 .3 A m b i g u o u s a n d H i d d e n S t a t e

So far we have assumed that the agent can observe the rele-
vant aspects of the world's state at no cost and on every time
step, assumptions that are clearly violated in many tasks of
interest. This is a l imitation that Dyna shares with most
other planning and problem solving systems--they are all
based on state. For example, a robot may not be able to de-
termine from its immediate surroundings which of two similar
rooms it is in, or whether a door is locked, or whether there
is a person in the room on the other side of the door. In these
cases the robot cannot unambiguously determine the world's
state, as much of it is hidden from him.

There are a number of techniques for dealing with this prob-
lem, though none is clearly a general solution. In some cases,
uncertainty about the true state on the world can be mod-
eled as probabilistic state transitions (Kaelbling, 1990). Ap-
proaches such as Dyna that can handle stochastic tasks can
then be used without change. In other cases, the state de-
scription can be augmented with past inputs to disambiguate
state. For example, a robot may not be able to sense a wall
in front of it, but if it remembers that it just bumped into
it and backed off, and makes that memory part of the cur-
rent state description, then the situation can be handled by
state-based methods.

Whitehead and Ballard (1991) have proposed learning per-
ceptual strategies for disambiguating state descriptions cre-
ated by a marker-based visual system. Ming Tan (per-
sonal communication) has also explored the use of Cost-
Sensitive learning in reinforcement learning for a similar pur-
pose. There is considerable relevant work in the dynamic
programming literature, but that direction has not been ex-
plored yet.

S IGART Bul le t in , Vol. 2, No. 4 162

www.manaraa.com

4 .4 E n s u r i n g V a r i e t y i n B e h a v i o r

In order to maintain an accurate action model, the agent
must try actions that it believes to be inferior. If it only
tries those that it believes are best, and the world changes,
it may never discover the change and never discover what-
ever new actions are really best. The simplest way to ensure
behavioral variety is to require the agent to choose an ac-
tion at random a small percentage of the time. This crude
strategy has many disadvantages, but is adequate for many
problems. Another approach is to choose actions based on
a probability distribution, such as a Boltzmann distribution,
that favors the apparently best actions, but does not select
them 100% of the time. If desired, the ' temperature ' of the
distribution can be reduced over time to increase the prefer-
ence for the apparent best actions (Watkins, 1989), but this
creates agMn the inability to handle long-term changes in the
world. The 'adaptive heuristic critic' architecture (Sutton,
1984) also has this problem. Perhaps the best solution devel-
oped so far, though still far from perfect, is the exploration
bonus proposed by Sutton (1990).

4 .5 T a s k a b i l i t y

Superficially, the Dyna architecture is not taskable. Dyna is
based on the reward maximization problem (Figure 1) which
recognizes only one goal, the maximization of total reward
over time. In addition, the object of the planning and learn-
ing processes are to learn one policy function that maps states
to actions with no explicit 'goal' input. However, this may
merely mean that the goal specification must be part of the
state description. For example, consider a Dyna robot re-
warded for picking up trash, but which must recharge its
battery occassionally. When its battery is running low the
optimal behavior will be to search out the recharger, whereas
when it has plenty of power the optimal behavior will be to
search out more trash. If the charge on the battery is part of
the state description then these two apparent goals can easily
be part of a single policy.

Similarly, to train a dog, e.g., to heel or to roll over, one pro-
vides distinctive cues, e.g., movements or sounds, that signal
to the animal which of its actions will be rewarded now. It can
be time-consuming to teach animals new behaviors because
of the absence of a common language. It may be possible
to task Dyna agents more directly than that. If one directly
modifies the part of the action model that predicts reward,
that could in turn cause the policy to change substantially
through IDP planning.

4 .6 I n c o r p o r a t i o n o f P r i o r K n o w l e d g e

Prior knowledge can be incorporated in Dyna systems
through the initial values of the policy and internal evalu-
ation functions such as the Q function. In principle this
could be a very flexible and efficient method, but there is
little work with it yet. Lin (personal communication) has
demonstrated in preliminary results a very effective method
that he calls ' teaching' in which an outside agent, say a hu-
man expert, takes control over the agent and demonstrates a
correct solution to the problem. This experience is processed
by the Dyna system (or, in Lin's case, Dyna-like system) in
the normal way, and greatly speeds subsequent learning.

R e f e r e n c e s

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H. (1990)
Learning and sequential decision making. In Learning and

Computational Neuroscience, M. Gabriel and J.W. Moore
(Eds.), 539-602, MIT Press.

Bertsekas, D. P. (1987) Dynamic Programming: Determinis-
tic and Stochastic Models, Prentice-Hall.

Bertsekas, D. P. & Tsitsiklis, J. N. (1989) Parallel Distributed
Processing: Numerical Methods, Prentice-Hall.

Cralk, K. J. W. (1943) The Nature of Explanation. Cam-
bridge University Press, Cambridge, UK.

Dennett, D. C. (1978) Why the law of effect will not go away.
In Brainstorms, by D. C. Dennett, 71-89, Bradford Books.

Grefenstette, J. J., Ramsey, C. L., & Schultz, A. C. (1990)
Learning sequential decision rules using simulation models
and competition. Machine Learning 5, 355-382.

Holland, J. H. (1986). Escaping brittleness: The possibil-
ities of general-purpose learning algorithms applied to par-
allel rule-based systems. In R. Michalski, J. Carbonell &
T. Mitchell, Eds., Machine learning II, Morgan Kanfmann.

Ka~lbling, L. P. (1990) Learning in Embedded Systems.
Ph.D. thesis, Stanford University.

Korf, R. E. (1990) Real-Time Heuristic Search. Artificial
Intelligence 42: 189-211.

Lin, Long-Ji. (1991) Self-improving reactive agents: Case
studies of reinforcement learning frameworks. In: Proceed-
ings of the International Conference on the Simulation of
Adaptive Behavior, 297-305, MIT Press.

Mahadevan, S. & Connell, J. (1990) Automatic programming
of behavior-based robots using reinforcement learning. IBM
technical report.

Riolo, R. (1991) Lookahead planning and latent learning in a
classifier system. In: Proceedings of the International Con-
ference on the Simulation of Adaptive Behavior, MIT Press.

Russell, S. J. (1989) Execution architectures and compilation.
Proceedings of IJCAI-89, 15-20.

Sutton, R. S. (1984) Temporal credit assignment in reinforce-
ment learning. PhD thesis, COINS Dept., Univ. of Mass.,
Amherst, MA 01003.

Sutton, R.S. (1988) Learning to predict by the methods of
temporal differences. Machine Learning 3: 9-44.

Sutton, R. S. (1990) Integrated architectures for learning,
planning, and reacting based on approximating dynamic pro-
gramming. Proceedings of the SevenLh International Confer-
ence on Machine Learning, 216-224.

Sutton, R.S., Barto, A.G. (1981) An adaptive network that
constructs and uses an internal model of its environment.
Cognition and Brain Theory Quarterly 4: 217-246.

Watkins, C. J. C. H. (1989) Learning with Delayed Rewards.
PhD thesis, Cambridge University Psychology Department.

Werbos, P. J. (1987) Building and understanding adaptive
systems: A statistical/numerical approach to factory au-
tomation and brain research. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-17, No. 1, 7-20.

Whitehead, S. D., Ballard, D.H. (1991) Learning to perceive
and act by trial and error. Machine Learning 7:, 45-83.

Whitehead, S. D. (1989) Scaling reinforcement learning sys-
tems. Technical Report 304, Dept. of Computer Science, Uni-
versity of Rochester, Rochester, NY 14627.

163 S I G A R T Bulletin, Vol. 2, No. 4

